【科学的温度】如何撬开震后灾害的“盲盒”?******
中新网成都1月17日电 (记者 贺劭清)滑坡预警预测是公认的世界性难题。“5·12”汶川特大地震后的十余年间,中国地质科研工作者如何从无到有,建立地震诱发滑坡预测模型?如何撬开震后灾害的“盲盒”?中国地灾防治如何走到世界前列?
围绕上述问题,2022年“科学探索奖”获得者、成都理工大学地质灾害防治与地质环境保护国家重点实验室副主任范宣梅接受中新网专访,对此进行解读。
范宣梅接受中新网记者专访。 唐启浩 摄有哪些因素可能诱发震后地质灾害?
范宣梅介绍,余震与降雨是诱发震后地质灾害的主要因素。强震刚发生完,震区容易发生较强余震。在余震影响下,一些在主震中震松、震裂的山体和已经发生滑坡的地方可能还会发生二次滑坡。同样,震后强降雨,也容易导致震区发生二次滑坡或泥石流灾害。
为了预测这些可能发生的地质灾害,成都理工大学地质灾害防治与地质环境保护国家重点实验室建立了空天地一体化的“三查”体系。
“我们除了大范围搜集卫星遥感数据,还会在雨季前后,对一些重点区域加强监测。”范宣梅表示,如果“9·5”泸定地震震区在2023年发生强降雨,那么磨西沟、湾东河、海螺沟等区域将有较大概率发生泥石流灾害。成理地灾国重实验室团队正准备在几条重点流域布设监测仪器,观测降雨量、沟道里的泥位、水位以及坡体上地震诱发滑坡堆积体的稳定性。
工作中的范宣梅。 受访者供图为什么要建立地震诱发滑坡预测模型?
汶川特大地震发生后的十余年间,范宣梅团队前往“4·14”玉树地震、“4·20”芦山地震、“8·3”鲁甸地震和“8·8”九寨沟地震等地震救援第一线,搜集宝贵的影像和数据,并基于全球50余次地震诱发的40多万条灾害数据,结合最新的人工智能算法,建立了地震诱发滑坡近实时预测模型。
“汶川特大地震发生后,主要救援力量第一时间前往了汶川,而不是当时受灾最严重的映秀、北川。这是因为当时我们没有及时、全面的卫星数据去在震后第一时间获取灾情灾损信息。”范宣梅指出,地震诱发滑坡预测模型最大的用途,就是填补震后72小时救援黄金时间的信息空白,给震后应急救援提供第一手的支撑和决策信息。
地震诱发滑坡智能预测模型。 受访者供图范宣梅介绍,卫星不会固定在某一个位置拍摄地球某一个固定点位,而是不断围绕地球旋转。如果泸定地震发生时,有一颗卫星恰好正在震区上方,那么这颗卫星可能拍下受灾情况。如果不凑巧的话,那么就需要等这颗卫星下一次再转到泸定地震上方,才能拍到震区受灾影像。甚至有时候,一张好的卫星影像拿到时,距地震发生时已经过去了一个月。
“如果完全依赖卫星数据去评估震后灾情,大概率会错过最佳救援时间。”范宣梅表示,地震诱发滑坡预测模型可以基于大数据与人工智能,根据本次地震信息,快速判断哪些地方地质灾害最为集中,哪些地方房屋道路受损最严重,让救援力量第一时间前往最需要救援的位置。
工作中的范宣梅。 受访者供图中国科研人员如何撬开震后灾害的“盲盒”?
范宣梅介绍,汶川特大地震发生后,中国科研人员将卫星技术、人工智能、大数据等技术与防灾减灾相结合,最终撬开震后灾害的“盲盒”。
范宣梅透露,成理地灾国重实验室目前正进行地震灾害链相关的科研攻坚。如果震后滑坡和泥石流形成的堰塞湖-溃决洪水,可能影响到下游上百甚至上千公里的范围。目前科研人员正研究如何更好预测灾害链的发生,避免因灾害链可能造成的大规模人员伤亡。
范宣梅表示,近年来无论是中国科研人员在地灾领域的经验还是科研成果,在国际上都处于领先地位。在未来应把防灾减灾领域的中国知识、中国智慧输送到国外,以帮助更多人。(完)
人工智能应用于更多领域 计算机研究深入光电结合****** 英国科学家在人工智能(AI)领域取得多项突破,包括用AI首次控制核聚变、用AI预测蛋白质结构等。“深度思维”与瑞士洛桑联邦理工学院合作,训练了一种深度强化学习算法来控制核聚变反应堆内过热的等离子体并宣告成功,有助加速无限清洁能源的到来。“深度思维”凭借“阿尔法折叠”算法,预测了迄今被编目的几乎所有2亿多个蛋白质的结构,破解了生物学领域最重大的难题之一,有助于应对抗生素耐药性,加速药物开发并彻底改变基础科学。该公司研发的“DeepNash”(深度纳什)学会了在“西洋陆军棋”游戏中,使用虚张声势等欺骗手段来击败人类对手。该公司AI创建的高效数学算法能解决矩阵乘法问题。该公司AI通过模拟数十年足球比赛的情况,学会了熟练地控制数字代理足球运动员,其建模的“AI代理”可与其他人工代理沟通合作,在玩游戏时共同制定计划。 牛津大学研究显示,AI能模拟条件反射进行联想学习,比传统机器学习算法快千倍。利兹大学科学家借助AI扫描视网膜以探知心脏病风险。 在计算机相关领域,牛津大学研究人员开发了一种使用光偏振来实现最大化信息存储密度的设备,其计算密度比传统电子芯片提高了几个数量级。南安普顿大学工程师则与美国科学家携手,设计了一种与光子芯片集成的电子芯片并创造出一种设备,能以超高速传输信息同时产生最少的热量。 在机器人领域,利兹大学团队开发了一种“磁性触手机器人”,直径只有2毫米,可由患者体外的磁铁引导进入肺部狭窄的管道采样。帝国理工学院科学家展示了一组受动物启发的飞行机器人,可在飞行中建造3D打印结构,未来有望用于在偏远地区建造房屋或重要基础设施。格拉斯哥大学科学家将由砷化镓制成的微型半导体打印到柔性塑料表面,所得设备的性能可与目前市场上最好的传统光电探测器媲美,且能承受数百次弯曲,可用作未来机器人的智能电子皮肤。苏格兰科学家开发出了一种先进的压力传感器技术,有助于改进机器人系统,如用于机器人假肢和机械臂。(科技日报记者 刘霞) (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |